Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            The process of matching patients with suitable clinical trials is essential for advancing medical research and providing optimal care. However, current approaches face challenges such as data standardization, ethical considerations, and a lack of interoperability between Electronic Health Records (EHRs) and clinical trial criteria. In this paper, we explore the potential of large language models (LLMs) to address these challenges by leveraging their advanced natural language generation capabilities to improve compatibility between EHRs and clinical trial descriptions. We propose an innovative privacy-aware data augmentation approach for LLM-based patient-trial matching (LLM-PTM), which balances the benefits of LLMs while ensuring the security and confidentiality of sensitive patient data. Our experiments demonstrate a 7.32% average improvement in performance using the proposed LLM-PTM method, and the generalizability to new data is improved by 12.12%. Additionally, we present case studies to further illustrate the effectiveness of our approach and provide a deeper understanding of its underlying principles.more » « less
- 
            Context. The ionization feedback from H II regions modifies the properties of high-mass starless clumps (HMSCs, of several hundred to a few thousand solar masses with a typical size of 0.1–1 pc), such as dust temperature and turbulence, on the clump scale. The question of whether the presence of H II regions modifies the core-scale (~0.025 pc) fragmentation and star formation in HMSCs remains to be explored. Aims. We aim to investigate the difference of 0.025 pc-scale fragmentation between candidate HMSCs that are strongly impacted by H II regions and less disturbed ones. We also search for evidence of mass shaping and induced star formation in the impacted candidate HMSCs. Methods. Using the ALMA 1.3 mm continuum, with a typical angular resolution of 1.3′′, we imaged eight candidate HMSCs, including four impacted by H II regions and another four situated in the quiet environment. The less-impacted candidate HMSCs are selected on the basis of their similar mass and distance compared to the impacted ones to avoid any possible bias linked to these parameters. We carried out a comparison between the two types of candidate HMSCs. We used multi-wavelength data to analyze the interaction between H II regions and the impacted candidate HMSCs. Results. A total of 51 cores were detected in eight clumps, with three to nine cores for each clump. Within our limited sample, we did not find a clear difference in the ~0.025 pc-scale fragmentation between impacted and non-impacted candidate HMSCs, even though H II regions seem to affect the spatial distribution of the fragmented cores. Both types of candidate HMSCs present a thermal fragmentation with two-level hierarchical features at the clump thermal Jeans length λ J,clump th and 0.3 λ J,clump th . The ALMA emission morphology of the impacted candidate HMSCs AGAL010.214-00.306 and AGAL018.931-00.029 sheds light on the capacities of H II regions to shape gas and dust in their surroundings and possibly to trigger star formation at ~0.025 pc-scale in candidate HMSCs. Conclusions. The fragmentation at ~0.025 pc scale for both types of candidate HMSCs is likely to be thermal-dominant, meanwhile H II regions probably have the capacity to assist in the formation of dense structures in the impacted candidate HMSCs. Future ALMA imaging surveys covering a large number of impacted candidate HMSCs with high turbulence levels are needed to confirm the trend of fragmentation indicated in this study.more » « less
- 
            We present a measurement of the branching fraction and fraction of longitudinal polarization of decays, which have two ’s in the final state. We also measure time-dependent violation parameters for decays into longitudinally polarized pairs. This analysis is based on a data sample containing mesons collected with the Belle II detector at the SuperKEKB asymmetric-energy collider in 2019–2022. We obtain , , , and , where the first uncertainties are statistical and the second are systematic. We use these results to perform an isospin analysis to constrain the Cabibbo-Kobayashi-Maskawa angle and obtain two solutions; the result consistent with other Standard Model constraints is . Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available May 1, 2026
- 
            Free, publicly-accessible full text available September 1, 2026
- 
            A<sc>bstract</sc> Using data samples of 983.0 fb−1and 427.9 fb−1accumulated with the Belle and Belle II detectors operating at the KEKB and SuperKEKB asymmetric-energye+e−colliders, singly Cabibbo-suppressed decays$$ {\Xi}_c^{+}\to p{K}_S^0 $$ ,$$ {\Xi}_c^{+}\to \Lambda {\pi}^{+} $$ , and$$ {\Xi}_c^{+}\to {\Sigma}^0{\pi}^{+} $$ are observed for the first time. The ratios of branching fractions of$$ {\Xi}_c^{+}\to p{K}_S^0 $$ ,$$ {\Xi}_c^{+}\to \Lambda {\pi}^{+} $$ , and$$ {\Xi}_c^{+}\to {\Sigma}^0{\pi}^{+} $$ relative to that of$$ {\Xi}_c^{+}\to {\Xi}^{-}{\pi}^{+}{\pi}^{+} $$ are measured to be$$ {\displaystyle \begin{array}{c}\frac{\mathcal{B}\left({\Xi}_c^{+}\to p{K}_S^0\right)}{\mathcal{B}\left({\Xi}_c^{+}\to {\Xi}^{-}{\pi}^{+}{\pi}^{+}\right)}=\left(2.47\pm 0.16\pm 0.07\right)\%,\\ {}\frac{\mathcal{B}\left({\Xi}_c^{+}\to \Lambda {\pi}^{+}\right)}{\mathcal{B}\left({\Xi}_c^{+}\to {\Xi}^{-}{\pi}^{+}{\pi}^{+}\right)}=\left(1.56\pm 0.14\pm 0.09\right)\%,\\ {}\frac{\mathcal{B}\left({\Xi}_c^{+}\to {\Sigma}^0{\pi}^{+}\right)}{\mathcal{B}\left({\Xi}_c^{+}\to {\Xi}^{-}{\pi}^{+}{\pi}^{+}\right)}=\left(4.13\pm 0.26\pm 0.22\right)\%.\end{array}} $$ Multiplying these values by the branching fraction of the normalization channel,$$ \mathcal{B}\left({\Xi}_c^{+}\to {\Xi}^{-}{\pi}^{+}{\pi}^{+}\right)=\left(2.9\pm 1.3\right)\% $$ , the absolute branching fractions are determined to be$$ {\displaystyle \begin{array}{c}\mathcal{B}\left({\Xi}_c^{+}\to p{K}_S^0\right)=\left(7.16\pm 0.46\pm 0.20\pm 3.21\right)\times {10}^{-4},\\ {}\mathcal{B}\left({\Xi}_c^{+}\to \Lambda {\pi}^{+}\right)=\left(4.52\pm 0.41\pm 0.26\pm 2.03\right)\times {10}^{-4},\\ {}\mathcal{B}\left({\Xi}_c^{+}\to {\Sigma}^0{\pi}^{+}\right)=\left(1.20\pm 0.08\pm 0.07\pm 0.54\right)\times {10}^{-3}.\end{array}} $$ The first and second uncertainties above are statistical and systematic, respectively, while the third ones arise from the uncertainty in$$ \mathcal{B}\left({\Xi}_c^{+}\to {\Xi}^{-}{\pi}^{+}{\pi}^{+}\right) $$ .more » « lessFree, publicly-accessible full text available March 1, 2026
- 
            We measure the branching fraction and -violating flavor-dependent rate asymmetry of decays reconstructed using the Belle II detector in an electron-positron collision sample containing mesons. Using an optimized event selection, we find signal decays in a fit to background-discriminating and flavor-sensitive distributions. The resulting branching fraction is and the -violating asymmetry is . Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available April 1, 2026
- 
            A<sc>bstract</sc> We report measurements of the absolute branching fractions$$\mathcal{B}\left({B}_{s}^{0}\to {D}_{s}^{\pm }X\right)$$,$$\mathcal{B}\left({B}_{s}^{0}\to {D}^{0}/{\overline{D} }^{0}X\right)$$, and$$\mathcal{B}\left({B}_{s}^{0}\to {D}^{\pm }X\right)$$, where the latter is measured for the first time. The results are based on a 121.4 fb−1data sample collected at the Υ(10860) resonance by the Belle detector at the KEKB asymmetric-energye+e−collider. We reconstruct one$${B}_{s}^{0}$$meson in$${e}^{+}{e}^{-}\to \Upsilon\left(10860\right)\to {B}_{s}^{*}{\overline{B} }_{s}^{*}$$events and measure yields of$${D}_{s}^{+}$$,D0, andD+mesons in the rest of the event. We obtain$$\mathcal{B}\left({B}_{s}^{0}\to {D}_{s}^{\pm }X\right)=\left(68.6\pm 7.2\pm 4.0\right)\%$$,$$\mathcal{B}\left({B}_{s}^{0}\to {D}^{0}/{\overline{D} }^{0}X\right)=\left(21.5\pm 6.1\pm 1.8\right)\%$$, and$$\mathcal{B}\left({B}_{s}^{0}\to {D}^{\pm }X\right)=\left(12.6\pm 4.6\pm 1.3\right)\%$$, where the first uncertainty is statistical and the second is systematic. Averaging with previous Belle measurements gives$$\mathcal{B}\left({B}_{s}^{0}\to {D}_{s}^{\pm }X\right)=\left(63.4\pm 4.5\pm 2.2\right)\%$$and$$\mathcal{B}\left({B}_{s}^{0}\to {D}^{0}/{\overline{D} }^{0}X\right)=\left(23.9\pm 4.1\pm 1.8\right)\%$$. For the$${B}_{s}^{0}$$production fraction at the Υ(10860), we find$${f}_{s}=\left({21.4}_{-1.7}^{+1.5}\right)\%$$.more » « lessFree, publicly-accessible full text available April 1, 2026
- 
            We measure the branching fraction of the decay using data collected with the Belle II detector at the SuperKEKB collider. The data contain meson pairs produced in energy-asymmetric collisions at the resonance. The measured branching fraction , where the first uncertainty is statistical and the second is systematic, is more precise than previous results and constitutes the first observation of the decay with a significance of 6.5 standard deviations. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available February 1, 2026
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available